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SUMMARY

In this report the method of small oscillations is used to investi-
gate the stability of a stratified plane laminar flow (x and y are
rectangular coordinates in the plane; x direction = primary flow
direction, y direction perpendicular upward.) The laminar flow U = U(y)
serving as basis 1B a boundary-layer flow" which increases from the
value U = O at the well to a constant value U = Up at great wall
distances. Stratlification of densities is assumed 1n the boundary
layer (thickness = 8), while outside of the boundary layer, in the zone
of constant velocity Uy, the density is assumed to be constant. The
flow function of a partial oscillation of the superposed periodic
disturbance motion is written as

¥ (x,5,%) = p(y)el(a@PBt) _ oy dalx-ct)

where a 18 always real and identifies the spatial angular frequency of
the disturbance (A = 2n/a = wave length of the disturbance); B 1is, in
general, complex, and the prefix of the imaglnary part of f decildes

the stability or instability of the disturbance. The stability investli-

gation 1s a characteristic value problem of the differential equ&tion of
the disturbance

(v - c)e[c_p" - Eﬂ-(U - c)U"p + Kp + L(T - c)[—(U - e + U'cp]

= -cx-iTQ(U - ¢) [q)nn _ 2a2cp" + cp _ L(cp"' _ q‘ (P ]

for the disturbance amplitude @, with the boundery conditions ¢ = @' =
at the wall y =0, and y = » at great distance from .the wallj

*"Turbulenz bei Warmeschichtung." Zeitschrift filir Angewandte
Mathematik und Mechanik, Band 15, Heft 6, December 1935, pp. 313-338.
Lecture presented at the fourth international Mechanics Conference held
at Cambridge, England, from July 3 to July .9, 193L.
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- R denoctes the Reynolds number; K = - — d—‘-) §-— (Richardson number)
- P dy U,°
4 L=-2% a6 nondimendional stratificati b \/E =T /‘fs
an = o &y e e onal s cation numbers, = Un g

is a Froude number. TFor a specified group of four values a, R, K, L,
this equation has only one solution for & particular value of c¢. The
study 1s limited to pure real values of c¢, that is, to the determination
of the curve of the transition points from stability to instability
(indifference curve) for specified values of K and I in the oR
plane. Stable (K > 0, L > 0) and unstable stratifications (K< 0, L < 0)
are investigated. It is found that for constant Froude number with
increasing stratification (increasing K) the critical Reynolds number is
greater and the region of unstable disturbances in the oR plane smaller
until finally at a critical value of the stratification quantity K,
which still depends on the Froude number, complete stability of flow
prevails for all disturbance wave lengths and Reynolds numbers.

The calculation is carried out for the flow past a flat plate, for
which Tollmien had computed the indifference curve for homogeneous flow.

2
du
The critical stratification quantity ©p = £ do (—) , at which the

p dy/ \dy -
turbulence must become zero, ranges fram 0.0409 to 0.029 for Froude
2
" numbers = = 0 to 5, while Taylor and Goldstein arrived at €, = 1/4% by
23

a gimilar calculation in which the fluid friction and the curvature of
the profile had been neglected, and Richardson and Prandtl had
obtained @ =1 and © = 2, respectively, by rough estimates.

The essential premises of the present investigation (plate profile,
gtratification of densities in boundary layer only) are falrly well
confirmed by Reichardt's measurements in the GSttingen hot-cold air -
tunnel, where the upper plate is heated with steam, and the lower plate
cooled with tap water (stable case). The decision, whether a measured
veloclty profile was laminar or turbulent, was made from oscillographic
records of the voltage fluctuations of a hot wire. The comparison of
the measurements with the present theory indicates a very satisfactory
agreement.

1. INTRODUCTION

On cool summer evenings, when there is a slight breeze, a person
can occaslonally observe the floating of damp fog with a very sharply
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defined boundary over a wet meadow, a sign of the fact that the turbulence
of the wind has stopped campletely, so that.the air layers slide laminar
over one another without turbulent intermingling. This is due to the
develomment of a marked temperature difference .as a result of the evening
“coollng, which prevents the warmer and hence specifically lighter upper
layer fram mixing with the cooler, heavier air layers near the ground.

Closely related with it are Richardson's observations (reference 1)
of the 1nfluence of the gustiness of the wind which can be regarded as
a measure for the turbulence strength on the vertlcal temperature
difference. He observed that the gustiness is small when the air is
colder below than above and that it increases when the temperature
difference approaches the unstable adiabatic equilibriwm. But,
surprisingly, the gustiness does not increase much more when the unstable
superadiabatic temperature difference prevaills.

Taylor had made similar observations in 1916 (reference 2). From
simulteneous records of temperature and wind velocity at about 40 meters
helght above ground for several days and nights, he found that on the
nights when the nocturnal temperature minimum was very marked as a
result of strong radiation, the turbulence was completely gone. But on
nights with lesser cooling, such as result from cloudiness, the wind
velocity fluctuations were almost as great as during daytime.

The flow of fresh water over salt water without substantial Iinter-
mingling, as observed in the Kattegat, for instance, belongs to the same
group of phenomena. Even the surprising stability of Bjerknes's polar
fronts, where the cold air masses form a wedge under the warm masses,
is tracesgble to the stratification (reference 3). Taylor, in 1927, made
a gsimple experiment by which the stabilizing effect of the stratification
of denslties on the turbulence can be shown by means of a salt solution
(reference k).

Conversely, there is increased turbulence, and hence a stronger
intermingling, as a result of convection motionsj and, when following
strong radiation, the lower air layers are heated more than the upper
leyers (reference 5).

Reichardt has conducted experimental Iinvestigations on a stratified
flow since 1927, under the direction of Professor Prandtl. A stream of
alr in a horizontal channel is blown between a plate cooled with water
and heated with steam, whereby the upper, as well as the lower, plate
cen be heated (stable or unstable stratification). In 1927, when these
experiments were still in the initlal stage, Prandtl set up a simple
theorem, in form of an energy consideration (reference 6), which 1s =
briefly reviewed.
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Agsume a flow in horizontal direction, with a stratification of
densities in perpendicular direction (y-direction), so that the density
decreases continuously upward. During the turbulent mixing motions,
work is then performed by the fact that heavier matter is ralsed and
lighter matter lowered with respect to the 1ift. The path traversed by
a particle in vertical direction, before it mixes again with the new
surrounding, is the Prandtl mixing path 1 (reference T), and the
difference in 1ift per unit volume of a particle shifted in the vertical
over the path length 1 is —gZ%%. The work per unit volume of displaced

fluid mass while traveling over the path length 1 1s accordingly

y=y+1!

(-g(y - y1) %) dy = --5-12

Z18

Y=y

To identify the quantities participating on the exchange, visualize
a level surface F; on one fraction By of this area, an upward motion
with velocity v1 prevalls, and on a fraction Bp a downward motion
with velocity vo, so that the total flow volume in unit time ig
F(Blvl + B2v2>. With it, the lifting work due to the stratification of

densities is

3

Ly = -F (Blvl + Be"e) %812 o | (1)

&

This work must be supplied from the stored energy of the turbulent
mixing motions. This is obtained by the work -of the basic flow at the
element, which is given by the product of the apparent turbulent shearing
gtress with the displacement velocity. For a body of base area F and
height 1, in which the afore-mentioned volume 1s exchanged, thils work

is Frl g?; T is the turbulent shearing stress for which 7T = pu'v',
according to Reynolds, where u' and v' are the turbulent fluctuation
velocities (u = u(y) = mean flow velocity). According to Prandtl,

u' = 1%? and, according to the foregoing, v' = Blvl + BEVE- Up to a

numerical factor ¥, which is still to be determined, in which the
correlation factor of u'v' enters, the turbulent shearing stress is
then

T = KDZ:—;(B]_V]_ + Bgvg)
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hence the work Ly of the turbulent apparent friction '

The existence and dlsappearance of the turbulence as a result of
the stable stratificatlion depends upon which of the two energy amounts
is the greater. If the work of the turbulent apparent friction is
_greater (Lt > LS), the difference for malntaining the turbulence remains,

_'but , 1f the work against the welght difference 1is gz'eater (LS > Lt) , the

turbulence must die out. Turbulence is therefore possible on an energy
‘basis when

2
anzQ(‘%f) (ﬂlvl + agvg) > - F(Blvl + Bgvg) 2—125‘-1—?,

or, after abbreviation
du\2 g dp
Kp — >,_.§. ——

For the nondimensional gquantity

=0 (3)

which serves as basls for all flows with stratification of densities,
the "Richardson number" is introduced, since he was the first to study
stratified flows in 1920 (reference 9). Thus © = O denotes the
homogeneous fluld. By Prandtl's energy appraisal the result 1s as
Tollows:

Turbulence, on an energy basls, is possible for © < 2k
Turbulence, on an energy basis, 1s Impossidble for © > 2k
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Although nothing definite can be said about the numerical factor kK, it
1s suspected that it lies near unity. Prandtl chose k =1 and so
obtained © =2 as stabllity limit. '

Taylor indicated subsequently (reference 10) that a factor 2 cancels
out when Prandtl's considerations are refined, so that Prandtl's
stability limit © =1 would agree with similar considerations by
Richardson (reference 9). Taylor (reference 11) and Goldstein (refer-
ence 12) later continued the theoretical study of flow with stratification
of densities, that is, the stability of a plane laminar flow with stable
gstratification of densities, by the method of smell vibrations. Viscosity
and compressibility were disregarded and the velocity profiles were
limited to those consisting of straight pieces, for reasons of mathe-
matical simplicity. In the differential equation of the disturbance,
only the effects of the stratification of densities on the potential
energy (gravity effect) were taken into account, while the inertia effect
of the gtratification of densities is neglected. ,The cases in which this
is permitted, and the resulting simplification in the calculation, will
be discussed later. The results of Taylor's and Goldstein's stability
investigations can be represented in the two nondimensionals @
and /8, A = wave length of disturbance, ® a characteristic length
of the velocity profile (boundary-layer thickness). For the maJjority
of cases explored by Taylor and Goldstein, no actual stability limit
resulted for @, but there still remained a certain although very narrow
‘range of unstable disturbance wave lengths A for every value of €.

Taylor obtained a definite result for the case of a fluld extended
infinitely upward or downward, with laminar velocity distribution and
uniform density distribution; he obtained © = l/h as stability limit.
Goldstein arrived at the same stability 1limit for the case of a fluid
extending to infinity upward or downward; with uniform density distri-
bution, the veloclity below and above 1s constant, but varies linearly
with the height in an intermediate layer.

A comparison of this theoretical result with test data from the
Gottingen warm-cold alr tummel produced no agreement at all relative
to the stability limit © = l/h, where, of course, 1t should be borne in
mind that the velocity profiles measured in the tumnel are not linear,
ag pogstulated in the Tgylor-Goldsteiln theory. It therefore seems
aprropriate to study the modification of the Taylor-Goldstein calculations
with due allowance for the friction and to choose for the velocity distri-
bution of the laminer flow a profile better adapted to the conditions to
be realized by experiment. This appeared to be all the more promising,
as the stability study on the homogeneous flow itself produced a satlis-
factory result only when the frictlon was included in sultable manner.

Tollmien (reference 13) indicated that profiles with finite curva-
ture other than zero must be used as basis, since the approximation of a
laminar profile by pleces of straight lines 1s Insufficient.
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In the first stability investigations of the laminar flow of a
homogeneous fluid by Lord Rayleigh (reference 14), both the friction
and. the profile curvature were disregarded; they did not glve the looked-
for instability. Further investigations by Scmmerfeld (reference 15),
R. v. Mises (reference 16), and L. Hopf (reference 17) on the Couette
flow (linear velocity distribution), which partly included the friction,
glso failed to give the desired results; it resulted 1n stability for
all disturbance wave lengths and all Reynolds numbers. Subsequent
investigations by Prendtl (reference 18) and Tietjens (reference 19), who
allowed for the maximum friction terms and used profiles conslisting
of-pleces of straight llnes as basis, obtained an instability for the
first time, but still no stability limit. Complete success, that is, the
correct theoretical calculation of the stability limit (critical Reynolds
number) was bestowed on these investigations only after Tollmien took
the curvature of the velocity profile alsc into consideration.

The Taylor-Goldstein stability studies of the flow of stratified
fluids form the analogy with Rayleigh's study on homogeneous fluid, as
they ignore friction, as well as profile curvature. They are to be
extended in the followlng by taking friction and profile curvature
into account. (Compare the subsequent outline.)

Outline of Past Stability Investlgations

Inhomogeneous fluild
Homogeneous fluid wilith stratification
of densities

Without With Without With
friction friction friction friction
Linear profile|Rayleigh|Sommerfeld, G- I. Tgylor
v. Mises, Hopf, Goldsteln

Prandtl, TietJens et al

Curved profile Tollmien Schlichting

Closely allied with these flows with stratification of densities
are the curved flows of homogeneous fluid, as, for example, the stable
stratification due to the centrifugal forces in the two-dlmensional flow
between two concentric, rotating cylinders, of which the one on the inside

‘is stationary, while the one on the outside rotates. In 1927 Prandtl

obtained, by an energy study similar to that on flow with stratification
of. densities, a stability limit for a flow stratified by centrifugal
forces, which 1s in close agreement with Wendt's measurcments (reference 20).
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The effect of such a stable stratification of cemntrifugal forces on the
critical Reynolds number was studied in an earlier report (reference 21),
and the results were also in satisfactory accord with experiment.

Returning to the flow with stratification of densities, the stability
investigation can very gemerally be formulated as follows:

For each superposed disturbance (wave length A\), the magnitude of
amplification (damping) is to be camputed for each Reynolds number and
for each layer (Richardson number), the laminer flow U = U(y) being
specified. If A, 1s the amplitude of disturbance at time t = O,

Bt
the amplitude A at time t 1s A = Age 1 , where fBi is a

measure of the amplification. This problem is dependent on eight
essential factors, namely,

By log de(in)crement of the amplification
A wave length of disturbance

te) characteristic length of laminar flow
Up maximum veloclty of laminar flow

o] density

Ap density difference in laminar flow

v kinemstic viscosity

g gravitational acceleration

From these elght quantities, five independent nondimensionals can
be formed which are the characteristic varlables of the stability
problem, neamely,

B;d
U— = dimensionless amplification quantity
m

% = dimensionless disturbance wave length

Up®
—V- = R = Reynolds number
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be

e -0 =,Richardéqn numbexr

olR

B

N

° B

. _ 2
= corresponding density veriation | or gg— =‘§%/@ = Froude numbe%)-

The most general solution of the stablllty problem therefore
implies the finding of the function

B4®
x >=o (3)

GGEE_’ g;I?,@,%§1

In an earlier report (reference 22), this very gemeral functlon G
of five variables had been speclalized to the effect that the amplifi-
cation for a homogeneous fluid (B = 0, Ap/p = 0) was computed as
function of the Reynolds number and the wave length of the disturbance,
hence

Bi®
L, R =0
Gl <Um > 6 >

The subsequent Investigations are based upon the limitation
employed in almost all other stabilllty studles, that only wave lengths
of disturbance A = A, which are neither damped nor amplified are

involved (neutral disturbances).

Hence, it ig assumed that 4 = 0 and the more special function

G2<%9-, R,; 8, ‘:_p) =0 (1)

which depends on only four variables is determined in place of (3). 1In
contrast with the homogeneous fluid there results at once through the
introduction of the density stratification two new nondimensionals,

namely © and Ap/p, where © gives the effect on the potential energy
of gravity of the density stratification and Ap/p represents the effect
of the stratification of densities on the inertia. The ratio of these two
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2
100 _m 2
nondimensionals, that 1is, @'p = ég- = =, 1s the sguare of a Froude
number. In place of ® and to/p, ® and F cen be chosen as
independent variables, in which case

602, &, 8, F) = 0 (ka)

replaces (4).

The simultaneous addition of two new independent variables
resulting from the stratification means an unusual increase in the
celculation, which in the homogeneous case 1s already quite extensive.
This function Gp is calculated explicitly numerically but not
analytically. To arrive at a relation that is convenilently comparable
with experiment, the disturbance wave length A, 1s, ultimately,
eliminated, by searching for that Reynolds number R = Ry (critical
Reynolds number) where precisely a single undamped disturbance still
exists, while all others are damped.

63(Bx, ©, F) = 0

or
Rx = Rk(e, F) (6)

is then also determined and from it a critical Richardson number @y of

the profile, that is, the maximum value of © at which an undamped
disturbance wave length still exists at all. Thils depends therefore
also on the Froude number F: ©y =8, (F). According to the energy

considerations by Prandtl and Richardson, @, =1 is independent of

the velocity profile; according to Taylor and Goldstein, who disregarded
the inertia effect of the stratification with respect to the gravity
effect, that is, assumed F =0, @y = l/h for certain linear velocity
profiles and uniform density distributions.

Tollmien's value of the critical Reynolds number for plate flow in
homogeneous fluid was Rk = (Uﬁb*/v)k = 575, hence Rg(e, F) = 575

for ® =0 and all F. It is to be expected that (@ > O)Rk(®@) > 575 for

stable stratification, and (® < O)R,(®) <575 for unstable stratification.
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The stability study with stratification of densitles is, first, made
rather general for a profile with curvature different from zero and then
the laminar flow along a flat plate 1s calculated as example, so as to
tle in with Tollmien and with experimental data: One more Ilmportant

‘assumption is made, namely, that the stratification exists only in the

boundary layer, while outside of it, where the veloclity of the laminar
flow is constant, the density itself is assumed to be constant. For the
distribution of the density, an exponential law

0o(¥) = poye Y

hence that = -y 1is a constant, is assumed later for reasons of

O+
g

mathematical simplification.
2. THE GENERAL EQUATION OF DISTURBANCE

Suppose the undisturbed plane laminar flow has the direction of the
horizontal x axis and is given solely as function of the height y:
(y axis at right angles, upward). The density of the undisturbed flow at
height y is unknown: pg = Do(y)- Limited to the two-dimensional case,

the equations of motlion and of continuity read

= + u

of2m . 2w, o | %, Fu | Fu
ot ox dy

2 2
p<§!+ua_v+v51>__ép+“§_v+5_v - g ? ()

The presumed incompressibility 1s expressed by the fact that every
particle maintains its density during the motion, hence

Do _ o + uée + vée =0 (7p)

= U(y)
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~ The plane disturbance flow 1s assumed as a wave motion advancing
in x directionl. '

We put therefore
u = U(y) + u' v=yv
where i > (8a)

u' = u(yle '

i(ox-Bt) v

= vl(y)ei(a‘x'ﬁt) _)

.are the components of the disturbance motion; o = 2x/N 1is real and
denotes the spatiel angular frequency; B 1s, in general, complex;

B =By + 1Bj. Br 1is the angular frequency of the dlsturbance motion
with respect to time; By 1ndicates the amplification or damping,
depending upon whether positive or negatlve.

The pressure p and the density p are expressed &s

- ) ' ' ' M
P = Poly) + P' p = poly) +p

with ' 5 (8b)

(ox-Bt)

p' = p1(y)el

p' = pl(y)ei(ax'ﬁt)_)

lThis implies no limitatlion for the general character of the
gtability study, since Squire (Proc. Roy. Soc. A. vol. 142, 1933) indi-
cated that when a plane flow 1s unstable against three-dimensional
disturbances at a certain Reynolds number, it is unstable at an even
lower Reynolds number for two-dimensional disturbances. The two-
dimensional disturbances are therefore more "dangerous" than the three-
dimensional.
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Inserting (8a), (8b), in (Ta), (Tb) gives .

p,'_-,E(ch - B)ﬁl + U'v;) = -iap; + u(-a?ul + ul")'\
pOEL(aU - Bvy + gp]:l = -p1' + u(-u?vl + vi") > .
- | (9)

vy' + 1oy =0

1(aU - B)py + v1p,' =0 . o,

only terms of the first order being maintalned; the dash denotes the
differentiation with respect to y. There are four equations for the
four unknowns Wy, V5 Pys and Py which, after elimination of uy, P1s

and p; leaves one equation for v; namely

0 [}
(aU - B)E(Vl" - a?vy) - afal - B)U"vy ' + -59-— {—ga?vl
o]
+ (o - B)2vq ! - a(aU - B)U'vl} = -V (aU - B){vl"" - 202y, "

. Po’ tit o) |>
+ o 1+Ec—,_(vl - oFvy (10)

v = u/po 1s assumed constant®.

"A flow function of the disturbance motion is introduced

¥(x,5,t) = o(y)el(ax-Bt)

2Acc6rd1ng to it, the viscosity u itself varies with y, and in

such a way that M(J(f)) = const. But the terms with é— are disregarded
Po\Y . : Yy

as small of higher order.
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so that, as a result of u' =

and v' = oY
ox

g

—

w = 0'(y) v - -iap(y)

Putting further c¢ = B/d, where the real part of ¢ signifies the®
phaese velocity of the disturbance motion, and introducing nondimensional
variables by referring all velocities to the maximum velocity Uy of
the lamlnar flow and all lengths to the boundary-layer thickness & of
the laminar flow, the-fundamental differential equation for the flow
function ¢ of the disturbance motion follows by (10) as

_ D, _ o _ _ n. _9% dpo gd
(U -c)=(p" - o) - (U - c)U'p -5 i U—QCP
m
d de[ 2 1 i "nn 2 n
_ = - - - = e - -2
+ oo 3 (U - ¢c)c9' -(U - c)U é] aR(U c)lo a“o
dp
b E O/ 111 _ 2 |z]
+ atp + o 11
IR (p P (11)
The dash indicates the differentiation with respect to -%; U stands
U C 5
for =, ¢ for o a for ad, and R = =R is the Reynolds number.
U m

The boundary conditions are: disappearance of both disturbance

components for y = 0 and y = <, when a laminar flow 1s assumed that

at y = 0 1s bounded by a fixed wall, while being infinite upward,

hence @ =¢' =0 for y=0 and y = ®. With these boundary condi-

tions, the stabllity problem proves to be a characteristic value problem
o) dpogg_

of the kind that each specified group of four values o, R, — — s
Dody Um2

5 dPg "

— -— gives a complex value of c, whose imaginary part decides between

Po dy



NACA TM 1262 15

amplification or damping of the particular disturbance in the particular
flow, which is characterized by a Reynolds, Richardson, and Froude

number. However, the study is restricted, as stated in the introduction,
to disturbances lying between stabllity and Ilnstability, hence for

which ¢  is purely real. For this case, c< U &and o << R, provided
that U" does not change signs in the laminar flow. The laminar flow
containg, therefore, a layer in which the phase veloclty of the disturbance
motion is equal to the primary flow veloclity. This layer is called
critical layer (y = ycrit) and plays a prominent part in the subsequent
study - ’

3. THE FRICTIONLESS DISTURBANCE EQUATION

Because dR 1s very great at the stabllity limit, information
about the solutions of the general disturbance equation (11) can be
obtained by analyzing the frictionless disturbance differential equation

" n 8 dp 6
(U - c)2(9p" - o) - (U - c)U'p - %d-y—oé?w

+ 5; ay-[fU'- c)ep' - (U - c)U'é] =0 (12)

Visualize the speed of the laminar flow near the critical layer where
U = ¢ expanded in a series

1
U-oc=U'(y ~yx) +53 Uk (¥ - 7x)°
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and broken off with the quadratic term. By (12)

1t "

' U U U 7" :
1 Ui 2 e 1 Uk
(y - yx) + 2—@@ - v 2| (9" - oPg) - ﬁ;(y -y |1+ Eﬁlj(y - yklo

]_U" Ull
+KCP+L(}’-Yk)+E_k—,(Y".Vk)2Jl"'i(}"Yk)CP
Uy Uy '

"

R = [ (13)
Uk

where
d dp 2-‘\
B E o Fe il
m- Uy o] k
> (1k4a)
5 dp
L= 3

To make K &and L constant in the boundary layer, the simple exponential
distribution law

po = oY (15)

is assumed for the density. Then

((%I)k ' (14b)
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The frictionless differentlal egquation contains the two nondimen-
sionals K and L as a result of the stratification of densities, K
representing the gravity effect and L +the inertia effect of the strati-
fication on the -disturbance motion. Taylor and Goldstein ignored the
inertia effect wlth respect to the gravity effect almost altogether which,
according to (13), seems to be permissible only when I << K, or

cm>2§- » U

accoraing to (14b) when (-— g% 5 << 1, thet is, when the Froude
K

dy
number of the flow is small with respect to unity. But, from the
subsequent calculations, it will be clear that at equal numerical value
of K and I the influence of the gravity effect on the stability is
far greater than that of the inertla effect. 2For the measurements with

which the calculation is to be compared, 5—- even exceeds unity, hence
g

L > K. Since it 1s Impossible to glve an estimate of the amount of the
inertia effect involved, the complete calculation is carried out with
gravity and inertia effect.

' The next step 1s the integration of (13). The solution of this
differential eguation is visualized as expansion in powers of XK and L

Q = QD(O) + ch(K) + LQD(L) + . . . (16)

broken cff wilth the linear terms in K and L. It Implies, proceeding
from the homogeneous fluid, the study of a slightly stratified flow

(K =L =0 is the homogeneous solutlon); m(o) is the already known
solution of the differential equation of disturbance of the homogeneous

fluid and Q(K) and @(L) are additional solutions due to stratifica-
tion. Thils expansion, and particularly the stopping with the linear
terms, 1s permissible only for values of K and L which are small
with respect to unity.

As the laminar flow, whose stabllity is to be studied, 1s approxi-
mated by a congstant, a linear, and a guadratic function, we integrate in
the following equation (13) for constent, linear, and quadratic velocity

distribution. The calculations for o) and @) run parsllel.

For the zone of constant laminar-flow velocity, the density is
assumed constant, as stated in the introduction. The disturbance
differential equation then is

q)"-d,2q3=0'
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with the decaying solution
¢ =e (17)
for great y.

For linear velocity distribution with the new variable, it is

—
y - Ik _ -
Yk 1
> (18)
and with
by (13)
2o 2 2 dp ¥
yi - @) + K9 + Lyy (y19 - v1 =0 (19)
2 dy
dy, 1
For the homogeneous fluid, there follows from
2,,(0)
d
- 5 - o290 = 0
dy
1
the solutions
sinh a3y
Ql(o) = QE(O) = cosh aq¥; (20)

By (16) and (19) the linear inhomogeneous differential equation for
the additlonal solution for oK) ig

2yp(K) .
yf(j'jleg_ y OL12<P(K)> - (0 : (21a)
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and for the additional solution @(L)

e e fizg@ N o) aglod) .
| y1<7;§I§— - 021} = [0l _ ) e (21b)

the homogeneous part of both equations being the same ag the differential
equation for ®(Q).' Hence, only a particular integral of (21a) and (21b)

has to be determined to . produce the general integrals @(K) and. ®(L).
These integrals can, however, be determined immediately by integration.

The result is a fundamental system for the solutions m(K) and @(L)
by 2la, 21b) in the form

91(0) Y1 g,(0)g, (0) 9p(0) [T 91(0)gy(0) )
CPV(K) — i} q)v(o) - __—_;V__ dyl + 2 f ——————————— d_y
Yk Yo ¥12 vk Yo 7,2 4
1 (0) (0)
(L) _ 4 9 (0) - o (0) (0)(Pv - _ WP (22)
Py + Py P1 . Po 1 371 dyq >
J1 ® (0) do (0)
+ 9, (0) ) 9 (0) yVl - d;l dy (Vv =1,2)
° _/

The choice of the lower integration limit is immaterial; the
present cholce is the point ¥y = y,, where the linear veloclty profile

is Joined to the parabolic.

For parabolic velocity distribution, which is written in the form

- U= (a-y)? (23)
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(e = given constant), there results from the new variables

I Jx
Yo = g - Ty
and
% = (a - yx)a

from equation (13) the disturbance differential equation

(ok)

2
Jo\. Jo do
+ L{a - yx) |72 - -—)(l -¥)e - ¥Rl - =) —~—|=0
2 2 2 2 2) 4y,
The solution @(o) of this equation for the homogeneous fluid
(K = L = 0) has already been computed by Tollmien and others. A
fundamental system is glven by
7 () =d Asy02 + day,>
Z -3y - G1p * Aoyt * A3yt . s
= 2+ ... - 1
q>2 eo + ely2 + 82:)’2 a Tk og Yo,
2 2
1 @ %
where d1 = 1; d.2=--2—; d3=_6—; dh':_Ié’:
(25)
dy = ————[n(n - Dapy + 20 dpp - @2 4 n=2,3
% on(n - 1) -1 G -3 7

€o 1; eyl = 05 82=—2—-l; e3=g+—]-:-é;

en = 5= nl- ) n(n.-3)en_l4-2a22en_2..aegen_3 -(2n-—3)dn_l-+2(2n,-1)@5]

n==2,3.
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By (16) and (2&), the differential equations for the addltlonal solu-

"tlons Q(K) and w(L) are

| 2 f320(K)
| yee( i %5) (? - o 2lE f) ( i _%> (K) - _o(0)
d“’fz : _

() . (0)
Yg(l' —) o "0‘22@(1' ) -(a- yk)[(l- yz)cp(o) - yg( - y—e)d—q)——

2 dye

The homogeneous part of this Inhomogeneous differential equation

for w(K) and @(L) agaln agrees with the differential equation
for w(o); hence a fundamental system for the general solutions @(K)

and @(L) 1g obtalned again by quadrature:

(0) [72 4 (0), (0) N

dy2

P
oy (E) = g, (0) o 2 —
a - ¥k 5 Jo

1 Y2 ( ) ’2‘>
020 [T 91(0doy(0)
a - yk 2

> (26)
o

o) = gy(©) - (0 [ ()] A ye;wv(o) [ON .
Yo y2<1 - 32>
Yo
‘o (0) cpl(o) (1 - ye)%( ) ) V(O)' 5 v = 1)
Yo y2<l i 3.'2)
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Herewith the frictionless solutions of the stratifled fluid for
linear and parabollc velocity distributions are obtained. Of these

integrals only ? (0) in the singular point y = § of the differential
equation is regular, while QE(O) Ql( ) and ¢2( 5 @l(L), and QQ(L)
exhibit singularities, where either they themselves or their derivatives

contain terms with log(y - yx) or (y - yk)_l. These singularities are

obviously attributable to the disregarded friction, and disappear as soon
as they are properly allowed for. The integration along the real y axls
must be replaced near the singular point y = T by the integration in

the complex along a semlicircle around point y = y),.. First, the sense of
rotation about point y = y, must be decided upon, that is, the choice
of the branch of the log at transition from positive to negative y - yp.
Tollmien indicated this transitlonal substitution for ¢, 0 which 1is

obtainable when the entire equation (11) 1s discussed in close vicinity
of the critical point y = Tyee
L. BEHAVIOR OF THE SOLUTIONS IN THE NEIGHBORHOOD OF
THE CRITICAL LAYER

To this end, a small zone around point y = ykx (transitional zone)
1s assumed, in which the substitution of U -c by U '(y - y,) and

U' and U" by Up' and Uk" is sufficlently accurate. In addition
-1
7= (@Y g e e (27)
where, on account of the small value of ¢, even In the transitional

zone (that is, small values of y - yy), 7 can assume great values.

By (11) and (27), the differential equation for o¢(y) 1is

U 1
1o+ 19 (n - 2iae?) - 1o G-ET + oy - ieua%>
U
8 (28)

L
+ Ko + 'Qen(cp -n9') =0

Uk
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| dp . ,
ol o}
where the terms with.'%-a— 5 in (11) are disregarded as amall of the
second order. Tollmien (reference 13) demonstrated by means of the

corresponding differential equation for homogeneous fluid (K = L = 0)
that the transitional substitution for ¢2(O) reads ae follows

* "

Uy

¥y - Ty >>O:¢2(O) =6g + eyy + e2y2 + . . +.E-1¢l(o)log(y -_yk)
k
- (29)
U "
k :
Y - Yk <:O:¢2(O) =e, t e1y + e2y2 + ..+ ﬁ—1¢1(0)(1og|y"-ykl- in)
" ‘

Thus, of the infinitely many values of log(y - yk) + 2kni
(k = positive or negative whole number), the one with k = -1 proves

physically real. A calculgtion simllar to that made by Tollmien for wg(o)
gives the same result for @l(K), @Q(K), and QE(L), namely, that the

terms with log {(y - yk) for negative y = Yy must be replaced by

logly - ykl— in. A further approximate calculation for the homogeneous

fluid, which in (28) includes only the highest friction term (i9"" + no" = 0),
gives the two other solutions @B(O) and Qu(o) needed for representing

the general integral of the differentlal equstion of disturbance of the
fourth order (11). It is

n n
@3,h(o)=f dnf nl/2H1/3(l)’(2) %(in3/2):|dn (30)

H(l)’(z) is the Hankel function of the filrst and second kind, respec-
tively. '

Additional solutions for 03 and oy, namely,

93,4 = P3,4(0) + Koz 1, (K) + 193 ) (T) 4 L L

should also be computed, but the subsequent paragraphs indicate that
the calculation of @3’h(K) and ¢3’4(L) 1s superfluous becaunse




ok : NACA ™ 1262

¢3,h(K)

@1,2<K) @3,4@) <« q’l,a(L)

<< and (31)

The effect of the stratificatlon of densitlies on the frictionless
solutions @ , ig, therefore, substantially greater than on the friction
b

golutions ¢3 )y, 80O the latter can be disregarded in the approximation;
b

this simplifies the calculation considerably. The result is analagous to
the conditions in a flow with stratification of centrifugal forces. In
the earlier Gottingen report (reference 20), it also had been shown that
in stable stratification due to centrifugal forces the effect of this
stratification on the frictionless solutions 91,2 1ie very much

greater than on the friction solutions P3, ke

The following proof is given:

5. THE VARYING EFFECT OF THE STRATIFICATION OF DENSTTIES

ON THE TWO PATRS OF SOLUTIONS

Deglired is a representation of the four integrals @31, 92, 93,
and ¢ for the wall proximity (very small ¥y) on the specific assumption
that the phase veloclty c¢ of the disturbance motion 1s very much higher
than the velocity near the wall. TIn other words, the critical point is
to 1le outside the layer where the solutlons are analxzed. FO£ the wall
proximity U - ¢ can then be replaced by -c and U by Uy, .
1 dpo

On account of -6- a;— = 7, according to equation (15), the general
o

equation of disturbance for a layer near the wall 1s by equation (11)

o"" + (loRc - 2a2)o" + [%A + iaR(Uw" + %? - a?%ﬂ =0
The solutions of this equation with constant coefficients are of the form

@v = ekvy v = 17 2, 3, L
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ky are the four roots of the equation of the fourth degree
b o L " 78 o
k* + (1oRc - 202)k= + [a* + 1aR(Uy + = - ael| = 0

Both pairs of solutions are given by

k° = -%-(ioﬂRc - 2a2) % V%(itﬂ:{c - 202)2 - of - iaR(UW" + 18 | o@c)

c
hence
kl’22 = a2 - %(Uw" + 7—8)
or when Uw" =0
k1,22 = “2'} - K(g‘é—'ﬂ » Simee K = Uzigz
or

2

K(Uy'

= % - o] ———
1{1’2 all ( )

Likewlse, when af 18 disregarded relative to oRc

2
U. t

i 2 W

{ ky ) = -loRe + K(——c >

or

2
Kia
k3 L= +vidRc[- S Re cx.c)

From

KUw'2
(0 ® - I 2\a /7
91 =910 +xp () = L
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follows

q)3(0) 2 \ac Re
Hence
5 (K) wl(o\l
2 - | (32)
Re

X
q,l(K) q,3(0)

With ©& as reference length, the flow along the flat plate 1s, at the
gtability 1limit, (reference 22) approximately

a=0.84; R =1700; c = 0.42

hence
(K) (0)
P P .
3 1 __lx_l<<

P ® o0 T\Bo

The same holds trus for o () and Q@ (K), end a similar derivation
2 L

can be given for @S(L) and ¢M(L)’ with which equation (31) is therefore
proved.
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This indicates that the effect of the gtratification of densities

“+
on the slowly variable solutions ¢y and ¢o, which are as e_ay’ is
i tVuRcy_

much greater than on the rapldly varying solutions which are as e
6. FORMULATION OF THE CHARACTERISTIC VALUE PROBLEM

The next problem deals with the boundary condlitions and also the
formulation of the characteristic value problem. A basic veloclty
profile is assumed which Increases from value zero to a maximum value Uy
which it then maintalns constant. By (17), the solution of the
differentlial equatlion of disturbance for the zone of constant veloclty,

vhere constant density is assumed also, 18: @ = e™®. With y = a
denoting the polnt of contact with the zone of constant U, the bowmdary
condition at thls point reads

Py' +ap, =0 - (33)

The general Integral reads
P =Cy9y +C0, + 03¢3 + Cpo),

The boundary conditions (p = @' =0 for y=0 and y =) can be

considerably simplified on the basis of the particular properties of
the four integrals P 5 Pos ¢3, and ®), - Thus, the integral g,

which for very great y 1increases infinitely (like e+ qaRcy) need
not be considered in the general integral, so that Cj = 0. Furthermore,

the integral @3, which 1s as e'JGRcy, needs to be considered only at ‘
the wall, while in the commecting point on the zone with constant velocity
(y = a) 1t can be regarded as zero with good approximation.

For y = a, the boundary conditions read, by (33) therefore, simply

C19'1g + Co0 'y + a(Cy®y, + CoPp,) =0
or, when putting

Plyg t Wy =Pvg v =1,2 (33a)
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C18;, * CoPpy = O - (3ka)

The boundary condition at the wall (y = 0) reads
C1P1w + CoPoy + C3P3y = O (3kDb)

Cl@'lw + 02¢12w + C3¢'3w =0 (3kc)

hence the three homogeneous equations (34a), (34b), and (3L4c) as bowndary
conditions. If one solution ¢ other than zero exists, the determinant

Prw Poy P3w | =0 (35)

must disappear, wherewith the stablillity Investigation as a characteristic
value problem of the differentlial equation of disturbance is proved.

The complex equation (35) depends, besides the constants of the profile
used as basis, upon the parasmeters o, c, R, K, and L - all of which,
especially c, are purely real - since only the transitional points from
stabllity to instability are involved. The functions Py and QVa are
usually complex (compare squation (29) and (30)). Visualizing the
parameter c¢ eliminated from the two real equations with which the
complex equation (35) 18 equivalent leaves one equation in which «, R, K,
end 1L are contalned. Thils equation gives, for flxed X and 1, the
indifference curve in the oR plane corresponding to this stratification
(K. L), and which separates the damped from the undamped disturbances.
Thus the solution of the stability problem terminates in the discussion
of equation (35).

Calculation of the determinant (35) gives

P3w _ Poy®1a = P1wloa

— = (36)
¢ 3w ¢'2w¢la - ®'1w¢2a
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This equation is then expanded In powers of the stratification
quantities K and L corresponding to the fact that, starting from the
homogeneous fluid, the stabllity study for slight stratification is to
be carried out. Only the right-hand side of the equation has to be
expanded, which contains the frictionless solutions exclusively, hence
13 not dependent on the Reynolds number R. On the other hand, the
solution ¢3 18 not dependent on the laminar flow serving as basis.

Tt can be summarily taken over from Tietjens' report. The left-hand
side of equation (36) depends only on

' ' Ik .
v = -yk(uRU'k)l/3 =-= (37)
* 1 P3w
For D(nw) = =~ 61——, the following table T 1s obtalned according to
Tiet jens:
Table 1: D(ny) as Function of 7y
“Nw D(le) “Mw D(le)
0 0.702 - 0.425 1 3.0 1.500 + 0.515 1
0.5 0.785 - 0.411 1 3.5 1.180 + 1.130 1
1.0 0.920 - 0.389 1 k.0 0.460 + 1.25%0 1
1.5 1.043 - 0.297 1 k.5 -0.0405 + 0.8080 1
2.0 1.206 - 0.147 1 5.0 0.0057 + 0.3645 1
2.5 1.357 + 0.108 1 5.5 0.1913 + 0.2393 1
After putting
Poy® - 90
1 2w 1a, 1w 2
oo = He o, K, 1) (38)
K9P owl1a ” P 1wlos
equation (36) gives
D("]w)
= = E(C"J c, K, L) : (39)

Nw
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This complex equation forms the starting point for the subsequent calcu-
lations, the alm of which is the explicit representation of the relation
between the five quantities a, ¢, R, X, and L glven by this equation.

7. SOLUTION OF THE CHARACTERISTIC VALUE PROBLEM

For the numerical treatment of this equation, it is essential that,
of the flve parameters on the left-hand side, the two stratification
guantities K and I do not occur nor the Reynolds number R on the
right-hand side.

The solution of this equation, that 1s, the calculation of the
correlated characteristic values a, ¢, R, K, and L, is first gffected
analytically so far as the expanslon in powers of K and I 1is
involved. The subsequent treatment of the ensuing equation must be
made by numerilcal graphical method, like in the earlier stability
studies (references 21, 22). Since the whole calculation in its
analytical, as In 1ts numerical-graphical part, is far too extensive to
be reproduced here, a brief outline of the line of reasonlng must be
gufficlent:

The expansion of equation (39) in powers of K and I 1is formally

E

=E“R%w+K§+L—+.. (39a)

E(o) denoting the value of equation (38), when inserting for P15 Py
the solutions for the homogeneous fluid, that is

(0)y (0) _ 4 (0), (0)

I (ko)
cplw(O) ¢2a(5)

E(O) -1 Poy

Vi 9o, (0)* (Dla(O) -

o OE
while = and =— .are obtained when introducing for all terms in (38)

oL
their expansion in powers of X and I, that is
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P = Py O + Koy, () 4 19y ()

(v = 1,2) _ (k1)

Pya = dlva(O) + KmVa(K) + L¢va(L) to.

¢v(K), ¢v(L), and hence ¢Va(K) and ¢va(L) are known according to
section 3. '

The complex equation (39) 1s equivalent to two real equations. For
the left-hand side of equation (39), the decomposition into real and
imaginary part is lmmedlately given according to table 1. The right-hand
side contains an imaginary component as a result of the traneltional
substitution of the integral ¢, (equation (29)). Effecting the indicated
expaneion 1n powers of K and 1 explicity results, after conslderable
paper work, In the expressions for the real and lmaginary part of

JE R
E(O), Si, and — as function of the two variables o and c. The
numerical values of E‘\“/, —, =, for the veloclty profile with which

K dL
the calculation was masde, are lndicated in table 2. The further solution
of equation (39) 1s made by graphical method. With fixed c¢, K, L the
left-hand side of equation (39) is plotted with =n, as parameter, and
the right-hand side with a as parameter in a polar diagram (fig. 2).
In general, it results in two intersection points of the D curve with

w

the E(a, c, K, L) curve for which the parameters ay, Go, 8nd Ty, Ty
are found. The corresponding Reynolds number follows then from the equation

1
ny = ~Ti(aRT" )3

The great advantage of the expansion in powers of K and L 1is
manifested in the numerical calculation by the fact that the relation
of the desired transition points from stabllity to Instabllity of the
stratification condition 18 verified in very simple manner. Computing
the quantities E(O), gﬁ’ %E for fixed c¢, as function of a, immediately
yields the curves E = E(a,c,K,L) for the homogeneous flow and for all

states of stratification. From the numerical values of i and- el in

table 2, it is apparent that the influence of the gravity effect of the
stratification is wvery-much greater than the influence of the inertia

effect (%% >>-%% . In the present calculations, small negative values

of K and L were also included, that is, slightly unstable stratifica-
tions, such as the flow of an evenly tempered air current above a heated
plate, which is a little warmer than the air.




TABLE 2.- R(E), I(E), R(S%), I(%%), R(S%), I(%%)AS FUNCTION OF a

FOR ¢ = 0.20; 0.25; 0.30; 0.35; 0.375; 0.40; 0.425; 0.45.

o OF JE dE (BE) (éE (aE (BE) BE)
« R(E) I(E) R SE) I(BE) R(gf) N5 R(E) 1(E) RSz (5% R\SF I(Bf
c = 0.20 c = 0,25
0.20 0.615 0.009 10.00 2.0 0.820 0.021 0.546 0.026 8.6k 2.11 0.730 0.010
.30 .396 .02h 10.88 3.22 1.4 .050 .350 .050 9. Uk 2,80 1.17 .000
) .132 LOLT 11.78 b kg 2.10 .095 L141 .090 10.28 3.59 1.49 ~.005
.50 -.205 .085 12,84 5.94 3.04 .159 -, 165 .155 11.46 k.37 2.18 . -.0ko
.60 -.610 .150 14.06 7.79 k.10 .263 -.513 .273 12.56 5.08 2.89 -.155
.70
c = 0,30 c =0.35
0.30 0.642 0.026 7.10 1.32 0.490 -0.034 0.730 0.027 5.92 0.850
Jho o1 .052 T.Th 1.77 .690 -.072 615 .052 6.45 1.10 0. 460 ~0.110
.50 .333 .091 8.138 2.15 .800 -.135 .480 .090 6.96 1.28 570 -.192
.60 .128 .157 9.28 2.55 1.100 -.255 .335 .151 7.56 1.kt .Tho -.335
.70 -.111 .260 10.26 2.87 1. 460 =465 .165 .2b5 8.30 1.56 .910 -.565
.80 -.420 Lo 11.80 3.84 1.820 -1.09 -.029 Jboo 9.08 1.52 1.080 -.985
¢ = 0.375 c = 0.k
0.ho 0.652 0.050 5.89 0.820 0.369 -0.118 0.690 0.050 5.48 0.586 0.32h -0.123
.50 .5he .088 6.33 .925 .500 -.208 .590 .087 5.76 650 430 -.219
.60 bt .1k42 6.85 .939 632 -.350 .48y .139 6.14 645 .520 -.355
.70 .285 .232 7.32 .966 LThe -.573 371 222 6.58 .506 590 -.570
.80 .133 .369 7.91 .803 812 -.923 .250 .339 6.91 L3468 .595 -.860
.90 ~.02k STh 8.% .34 .870 -1.h02 .129 .525 7.26 .056 Asp -1.26
c = 0.b25 c=0.45 -
0.ho 0.720 0.049 4,96 0.380 0.270 -0.125 0.75h 0.046 4.58 0.170 0.237 -0.127
.50 .637 .085 5.2k .390 .350 -.223 681 .082 L8k .1h0 .288 -.220
.60 545 .133 5.51 .330 k23 -.355 .605 .126 5.00 .070 .336 -3k
.70 452 .209 5.94 .190 Lko -.555 .530 .195 5.36 -.050 .32h -.513
.80 .360 .315 6.12 .000 2395 -.795 56 .298 . 5.40 -.030 .02 -.T25
.90 266 475 6.28 -.220 .210 -1.10 .391 430 5,44 -.4g0 .01k -.927

ct

c9cT WL VOVN
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8. APPLICATION TO PLATE FLOW

For the stability study with stratification of densities, the
laminar flow along a flat plate has been chosen as example for the
numerical calculation. Tollmien made the corresponding investigation
for the case of homogeneous fluld (reference 13). Blasius originally "
computed the laminar velocity distribution along the flat plate
(reference 23) according to formulas by Prandtl (reference 24). In the
present stability study, the modification in the laminar flow due to
the stratification of densitles can be disregarded because a simple
evaluation3 indicates that 1t is small, when the boundary layer contains
only a slight stratification of densities ag it was assumed.

3The force in x dlirection produced by the stratification per unit
volume is:

1dp 588 _ o35
() S3y P ax - PEY0 &
and the friction per unit area u%g
or per unit volume u dU  uly
5 dy 52

Accordingly, the effect of the stratification of densities on the
laminar profile can be disregarded when

as __Hm
PEYd — K —3
&7 dx 52

In that case

.5 ~ yx U—"‘ma ~ "‘_'Umx d—a ~ v ~ ___V e} (—1—6 ~
Um Y v dx Umx Ums dx

hence it must be

Fl<

uu

v m
PEY— << — O©OT ——Bz—-2'<< 1
Uﬁ o) (Um/S)

which is precisely the assumption made above.
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For the present purposes, an approximate representation of the
Blasius profile by a straight line and a parabola is used (fig. 1).
The profile 1s to start at the wall (y = 0) with a straight piece,
which is tangentially Joined to a parabollic piece and it, in turn,
tangentially onto the constant velocity U = Uy -

The result 1s the approximate representation

ﬂ
<X U _ I
0<% < 0.175 T 1.68 L
0.175 < £ < 1.015 —[1—1-(1015-12 L (42)
. _8_ . Um— . 8
I =1.015 U -1
D) Uy

eariier indicated for U.

Hence a = 1.015 by comparison with equation (23). But for the
transitional substitution (equation (29)), U"/U' must be taken according

to the exact Blasius series, not U' = constant and U" = O in the
linear range and U" = constant in the parabolic range. The first terms
give ’
u' Yy
O e -se()
(43)
" 2
L -18.u(§)
Up

This supplies all the data necessary for the numerical calculation.
Figure 2 shows the previously described polar diagram for a specific
. c-value (c = 0.10), where the several E curves correspond to the
written-in values of the stratification quantity K, and I 1s always

equal to zero. For this c-value - say, for X >Z%5 - there are no inter-
section points of the 'E  curves with the D curve, hence, no
w

Instability. For other ¢ values, this maximum KX value, at which
instability is still Jjust possible, is different. The highest possible
K value at which instability is still just possible (critical value
of K) is K = l/2h, when assuming L = O. TFor other values of

L (L = -1/10, +1/10, +1/5), other critical values of K are obtained.

~
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TARLE 3
U, %
TRANSITION POINTS ob* AND —5— FOR VARIOUS VALUES OF
THE STRATTFICATION QUANTTTTES X AND L =
K = _%5 L=0 K = g3
Uy o U B* U, B* (U % '

c < S >1 (aB%)y (—E—v )2 (o) 5 c <—-——v )1 (aB*)4| \ B )2 (a8%),
0.20 { 1.15 x 10*| 0.038 0.10 | 1.05 x 10| 0.053 | %.05 x 10°| 0.089
0.30 | 1.8% x 103]| 0.078 | 8.75 x 103[0.187 | 0.20 | 7.16 x 103| 0.095 | 2.57 x 10*| 0.16:
0.35 | 1.01 x 103} 0.101 | 2.99 x 103|0.232 | 0.30 | 1.57 x 103| 0.148 | 3.88 x 103 0.232
0.375] 7.25 x 102 0.121 | 1.88 x 103 [ 0.251 | 0.35 | 9. x 102| 0.183 | 1.84 x 103 | 0.256
0.40 | 5.86 x 10| 0.139 | 1.30 x 103 0.266 0.375| 7.95 x 102} 0.207 | 1.26 x 103 0.267
0.45 | 4 ok » 1021 0.193 | 6.08 x 1031 0.282 | o.ko | 7.67 x 102! 0.250 { 8.60 x 1021 0.265

1
K =
K = "316 &
, 0.20 | 1.05 x 102| 0.06% | 2.95 x 109} 0.098
0.20 | 9.27 x 103| 0.0%0 0.20 | 7.30 x 103] 0.108 | 2.11 x 10*] 0.172
0.30 | 1.68 x 103{ 0.093 | 6.75 x 103 | 0.202 0.30 | 1.66 x 103] 0.165] 3 48 x 103 0.234
0.35 | 9.20 x 102} 0.121} 2.61 x 103{ 0.2%0 | 0.35 | 1.06 x 103| 0.20% | 1.69 x 103 | 0.258
0.375] 7.15 x 102[ 0.1%0 | 1.70 x 103 | 0.257 | 0.375l 8.97 x 102l 0.239 | 1.11 x 103| 0.263
0.k0 | 5.70 x 10%]| 0.159 | 1.20 x 103 ] 0.271 koL
0.45 | k.51 x 1021 0.233 | 5.23 x 102 | 0.264 R
0.10 | 1.19 x 103| 0.079 | 2.24 x 102| 0.10k4
Kool 0.20 | 8.08 x 103| 0.125 [ 1.71 x 10*] 0.279
100 0.30 | 1.90 x 103| 0.190 | 3.1% x 103| 0.238 |
0.20 | 8.22 x 103| 0.060 0.35 | 1.21 x 103l 0.236 1 1.47 x 103] 0.255 ;
0.30 | 1.60 x 103] 0.106| 5.7 x 103} 0.211 =L
0.35 | 8.96 x 102{ 0.136 | 2.36 x 103| 0.245 3 5
0.375| 7.05 x 102 0.156 | 1.57 x 103{ 0.262 | 0.10 | L.k2 x 105| 0.097 | 1.68 x'10°| 0.105 |
0.40 | 5.76 x 10°} 0.177 | 1.12 x 103{0.273 0.20 | 9.04% x 103| 0.145 | 1.4% x 10*| 0.183
o.52 | 5.18 x 10°] 0.198 | 8.28 x 103 0.279 0.30 | 2.10 x 103] 0.211 | 2.73 x 103] 0.236
' 0.325 1.69 x 103l 0.232 | 1.90 x-103| o0.244
0.20 | 7.20 x 103} 0.077| 3.76 x 10*| 0.149 | 0.20 | 1.0% x 10| 0.166 | 1.22 x 10*] 0.277
0.25 | 3.01 x 103 0.101 | 1.20 x 10%| 0.188 | 0.225 6.51 x 103| 0.181 | 7.4% x 103| 0.195
0.30 | 1.53 x 103| 0.129 | 4.6 x 103] 0.223 | 0.23 | 6.05 x 103] 0.186 1 7.09 x 103! 0.199
0.325( 1.15 x 103} 0.143 | 3.29 x 103 0.238 : 1
0.35 | 8.93 x 102} 0.159 | 2.07 x 103] 0.251 K=2x
0.375 7.36 x 10°| 0.181 | 1.k2 x 103{ 0.264 3l T —
0.225) 7.18 x 103| 0.1
0.50 | 6.33 x 102| 0.205! 1.02 x 103| 0.27h sl T 0
0.42 | 5.76 x 102] 0.239 | 7.13 x 102| 0.273




TABLE 3 - Continued

K =-£% L =-f%- K =0
U, &% U, 5% U, 5% U, 5% '
c < L ) (oB*) ( I ) (o) c ( I > {ad%) ( o ) (aB*)
VoA 1 v /s 2 v/ 1 v /o 2
0.30 | 1.9% x 103| 0.072 0.20 | 8.39 x 103] 0.065 | ——mcmamame| ammm-
0.35 | 9.9% x 102| 0.102 | 3.16 x 103| 0.218 | 0.30 | 1.67 x 103| 0.113 | 5.21 x 103{ 0.207
0.50 | 6.49 x 10° 0.130 | 1.38 x 103| 0.248 0.375| 7.9% x 102{ 0.166 | 1.51 x 103 | 0.2%
0.425| 5.20 x 10° 0.155 | 9.41 x 10°| 0.254 0.40 | 6.71 X 10° 0.187 | 1.07 x 103 0.257
0.45 | 4.58 x 102 | 0.184 | 6.38 x 102| 0.252
K=z
0.20 | 1.17 x 10| 0.040 | -- -
0.25 | 4.11 x 103 | 0.062 | ceemmceaa- ——
0.30 | 1.8L x 103] 0.086 | 7.46 x 103| 0.185
0.35 | 1.03 x 103|0.114 | 2.76 x 103] 0.225
0.%0 | 6.22 x 103 0.150 | 1.28 x 103| 0.253
0.425| 5.29 x 103{0.173 | 8.63 x 10| 0.262
0.45 | k.92 x 103 ] 0.218 | 5.44 x 10°]| 0.245
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TABLE 3 — Continued

K=0 L= 116 K = 10
c (U_ma*) (aB*)4 (‘ﬁ) (ad%), c <U1'-‘5*> (aB*) (Um5*> (aB*)
v v v 1l v ; 2
1 2 1 2 |
0.20 | 6.16 x 103 0.096 | 1.98 x 10”' 0.187 0.20 | 8.53 X 103 0.175 | 1.1k X 101" :0.199
0.30 | 1.45 x 1031 0.139 | 4.09 x 103 | 0.242 0.30 | 1.80 x 103] 0.210 2.72 x 103 0.257
0.375| 6.47 x 102 |0.195 | 1.33 x 103 0.286 | 0.325| 1.38 x 103| 0.228 | 1.9% x 103 0.265
0.% | 5.49 x 102 | 0.21% | 9.75 x 102 | 0.296 | 0.35 | 1.19 x 1031 0.259 | 1.30 x 103 0.270
0.425! k.65 x 102 1 0.251 | 6.65 x 10° | 0.300 - ‘
. K= —
35
K= 0.20 | 9.58 x 103 | 0.188 | 1.0k x 10*| 0.195
0.20 | 7.12 x 103 ] 0.141 | 1.9 x 10* [ 0.188 | 0.25 | 3.82 x 103{ 0.203 | 5.05 x 103 0.225
0.30 | 1.57 x 163 0.183 | 3.10 x 103} 0.256 | 0.30 | 1.91 x 103| 0.224 | 2.58 x 103| 0.252
0.375| 7.86 x 102 | 0.251 | 1.07 x 103 | 0.288 | 0.3251 1.55 x 103 | 0.246 | 1.76 x 103| 0.262
0.39 | 7.66 x 10° 1 0.272 | 8.45 x 102 | 0.284 - . |
_ K==
33
0.25 | k.10 x 103 | 0.212 | 4.70 x 103 | 0.22k
0.30 | 2.06 x 103]0.235 | 2.37 x 103} 0.250

c92T WL VOVN
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TABLE 3 — Concluded

K=0 L = -]—‘- K = —}—
5 4o
U:ms »* ( *) ( U'mﬁ *) <Um5 * > . ’

c < v >1 (005*.)1 v, 5 (“5*)2 ¢ v /1 (ab*)l vV /o (ab*)2-
0.20 | 5.26 x 103} 0.136 | 1.30 x 10*| 0.218 | 0.30 | 1.77 x 103| 0.247 | 2.26 x 103 | 0.276
0.30 | 1.32 x 103| 0.157 | 3.58 x 103| 0.269 | 0.325|1.27 x 103| 0.256 | 1.78 x 103 | 0.29%4
0.375| 5.52 x 107 | 0.212 | 1.21 x 103] 0.310 | 0.35 |9.26 x 10°| 0.268 | 1.43 x 103 | 0.308
0.40 | k.3k x 102 | 0.231 9.91 x 102 0.320 0.375| 7.52 % 102| 0.290 | 1.0% x 1031 0.319
0.45 | 2.87 x 10%1 0.272 | 5.05 x 102| 0. 340 o

: K= =
. | 3T |
K = '616 0.30 |1.88 x 103| 0.258 | 2.17 x 103 0.280
: 0.325 | 1.35 x 103} 0.266 | 1.7L x 103 | 0.296
0.25 | 3.38 x 103| 0.216 | k.55 x 103| 0.243 | 0.35 |1.01 x 103| 0.280
0.30 | 1.52 x 103| 0.212 | cmccccman- )
0.35 | 8.65 x 10° | 0.2k2 - K=z
0.375| 6.76 x 10°| 0.259 | 1.0% x 103| 0.317 0.30 |2.02 x 103| 0.27% :
0.50 | 5.39 x 102} 0.285 | 8.17 x 102} 0.321 | 0.325}| 1.%0 x 103| 0.274 | 1.65 x 103] 0.294
0.425 'L5.o6 x 10° 0.311 ] 5.8 x 10° 0.326 0.35 | 1.0% x 103] 0.290 | 1.26 x 103} 0.312
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So far, all lengths had been referred to the boundary-layer
thickness & (half the width of the parabola inscribed in the Blasius
~ profile, flg. 1) For the presentation of the mathematical results, the

displacement thickness &% = f ( - ->dy is chosen as reference
length (8% = 0.3418).

The transition points computed for the various stratifications
(characterized by K and L) are correlated in table 3, and the
corresponding curves plotted in figures 3, 4, 5, and 6. The area
circumscribed by the curves represents the area of unstable digturbances.
The diagrams indicate the looked-for connection between the wave length
of the disturbance A = 2n/a, the Reynolds number R, and the stratifi-
cation (K and L) as formulated in equation (4) in the introduction.
Fach diagram corresponds to a specific value of L(L = -1/10 o, +1/10,
and +l/5), while the several curves of each diagram relate to different
values of K. Each curve 1s therefore characterized by two parameters K
and L. The curve K =0, L = 0 1is Tollmien's indifference curve for
homogeneous fluid. For stable stratifications (K > o, L > 0), the
area of the unstable disturbances is smaller and for unstable disturb-
ances greater than for homogeneous fluids.

The indifference curves themgelves exhibit the following unusual
fact: For homogeneous fluid and for unstable stratifications each
indifference curve extends to infinity at great Reynolds numbers, while
for stable gtratifications the indifference curves are closed. With
increasing stable stratification, the unstable range of the wave length
of disturbance enclosed by the indifference curve becomes consistently
smaller, until finally at a K value dependent on L the indifference
curve shrinks to a point located in the oR plane.

The critical Reynolds number corresponding to a certain state of
stratification is of particular interest. 1In figure 7, the critical

*
Reynolds number (HE§_> is plotted against ©, for several values of
v

M |
g%g. Thus is the relation important for the com-
parison with experiment, as formulated in equation (6). For small
values of @, the variation of the Ry —curves with the Froude number
)
EE' is rather small. But the stability limit @, - that is, the

*g
maximum value of the stratification quantity at which turbulence is
still possible - gtill depends to some extent on the Froude number.

the Froude number




THE CRITICAL REYNOLDS NUMBER (

do ffav \ 2
1\1UMBERe>=-§-—/<a-y-)v AND THE FROUDE NUMBER

TABLE 4

Upd*
5

)k AS A FUNCTION OF THE RICHARDSON

dy, 5g
Hlf =0 ﬁ =1 '[_{!2_2_ = 2 -EIEE = )-I- EI_UE = 5
5g 5g 5g 3g 5g
o U ¥ o <Um5*) R (Umb* o (UmE)* 5 (Uma*'>
v X v % v v v %
—0.0208 387 -0.0200 410 —0.0200 k20 —0.0200 ko —0.0200 450
-0.01k42 438 —0.0100 k80 ~0.0100 485 ~0.0100 hos —0.0100 500
-0.0087 L87 0 575 0 575 0 5715 0 575 -
0 575 0.0100 T50 0.0100 740 0.0100 T10 0.0100 693
0.0090 738 0.0200| 1038 0.0200| 1025 0.0200 998 0.0200 980
0.0153 887 0.0250| 1287 0.0250 | 1300 0.0250{ 1315 0.0250 | 1305
0.0233 | 1182 0.0290| 1524 0.0290 | 1620 @1t = 0.029T| 2350 Bepqy = 0.0290 | 1850
0.031k | 1631 |®,pqy = 0.0370| 5350 |®.p.q4 = 0.03%0} LOOO
0.0392 | 2920
0.0409 | T180
Ocrit = 0.041T ©

292T WL VDOVN
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The dependence Oy .= ®k<g%2) +is reproduced on figure 8. For g%—
g

hence, for the case that the inertia effect of the stratification is
disregarded relative to the gravity effect - it results in Oy = 0.0409.
Therefore, the inclusion of the friction for nullifying the turbulence
affords a considerably lower value of the stratification quantity than
without friction, according to Taylor and Goldstein, who obtained

Ck = 0.250.

=0 -

By equation (14a) the stratification quantity X is so defined
that the velocity gradient must be taken at the critical point which
differs according to the position of the critical layer. But, in the
pregent case, 1t was preferred to form the Richardson number with the
velocity gradient at the wall, namely

dpg au\ °
o £ 5 [ (&), ()

as obtained frém K by the reduction

RRVON

d d
Since E§>k/xﬁg> is always close to unity, the @ values differ
W

1ittle from the KX values.
9. COMPARISON OF THEORETICAL WITH EXPERTMENTAL DATA

Velocity and temperature distributions in a flow with stratification
of densities, which are very appropriate for the compﬁrison with the
present theory, were made some years ago by Reichardt™ in the warp-cold
air tunnel of the Kaiser Wilhelm-Institute for flow regearch at Gottingen.
The tunnel is 16 m long, 1 m wide, and 25 cm high. The velocity profiles
were measured at the end of the tunnel with a hot-wire survey apparatus
which, to compensate for the temperature effect, consisted of two hot
wires of different diameter. One of these wires could at the same time
be used for temperature recording., The study so far included only the
stable case, where the upper plate of the tunnel was heated with steam
(100°) and the bottom plate cooled by tap water (10° C), hence at a

uNot published so far in detail; see the test reports (reference 26).
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temperature gradient of 90o C at 25 cm. Very.low alrspeeds. of around
1 m/sec were indicated, since at higher speeds no perceptible effect
of the temperature stratification of the flow is produced. Figure 9
represents a velocity and temperature distribution measurement. In
the central part of the tunnel where the speed is practically constant,
the temperature is also nearly constant.

For the comparison with the present theory, the measured profiles
were evaluated to the effect that for each profile the maximum
velocity Up and the boundary-layer thickness & (and hence the
displacement thickness &%) of the boundary layer are obtained. With
these, the theoretical veloclty distribution of the laminar flow was
then ascertained and thelr velocity gradient at the wall

@, e

computed. In figures 10 to 1L are shown for various meximum veloci-
ties Up, the measured velocity and temperature distributions for

the boundary layers on the warm and cold plates together with the
distributions upon which our stability calculations were based. The
relation between temperature and density is, on account of the constant,

o v
Pw T

Q
H
o I
zle
]
vl
&8

T, the absolute temperature; subscript w, the value at the wall. The
density distribution assumed for the present theory (equation (15))
according to the law

corresponds therefore to a temperature distribution

T = Twe7y (b5)

The constant 7y was determined from the measurements in such s
way that the recorded temperature distribution agreed as closely as
possible with the distribution given by equation (45), which served as
basis of the present calculations (cf. figs. 10, 11, 12, 13, and 14).
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With it the Richardson number

. g at
- yg _ _T dy
2] ) 5
: U  Upd*
the Froude number F2— and the Reynolds number R—;— for each

5g
profile can be computed. The value corresponding to the mean tempera-
ture in the boundary layer was chosen as the value for the kinematic
viscosity V. The numerical data are reproduced in table 5.

The decision of whether the recorded velocity profile was laminar
or turbulent wag made from oscillographic records of the voltage
fluctuations in the hot wire, but it could also be observed direct from
the shape of the velocity profile. Degpite the finite tunnel width and
the density differences, the measured velocity for the laminar profiles
is in good agreement with the Blagius plate flow, while the turbulent
profiles have almost the form of the 1/7 power law.

For comparison, the test points were plotted in an R,® diagram,
@ being expressed at logarithmic scale (fig. 15). To each profile in
figures 10 to 14, there corresponds one point in this diagram, the
laminar and turbulent profile being characterized by different symbols.
The so0lid curve is the theoretical stability limit which gives the
critical Reynolds number as function of the stratification quantity &
for the Froude number F = 0. The curves for the other Froude numbers
are omitted since they do not differ appreciably from the curve
for F = 0, according to figure 7. The so0lid curve gives the boundary
between the theoretically stable (laminar) and the theoretically unstable.
(turbulent) attitudes. The Taylor-Goldstein value QHdt = 0.250 and

the value R. it = 575 for plate flow in homogeneous fluild are also
included. The comparison of the presented theory with the test data at
2
U .
which the Froude number E?_ ranges between 0.86 and 3.82 (compare

g
table 5) indicates that in the theoretically stable zone only laminar

attitudes, and in the theoretically unstable zone,_with one single

exception, only turbulent attitudes were observed. Incidentally, it
should be noted that it is not contrary to theory when laminar states
are gtill observed closely above the stability limit Rcrit = Repi11 95

5From the oscillographic records on the rejected profile, no clear dis-
tinction could be made between laminar and turbulent.




TABLE 5.- COMPARISON WITH TEST DATA

U_5* 2 :
Figure No. | - 2’: —~1|8cm | ¥*cm VepPsec ™| (T, = )0 7ot ”\1} 8 |F= gl;— theoretical experimenta.l.
1y j¥e PL | 127.5 h.34 1.48 ] o0.202 - [ah 0.0431} 934{0.0173| 3.82 stable laminar
k. P1.| 134 7.20{2.451 0.151 -25 0.0117|2175{0.0117| 2.54 | unstable turbulent
13 " P1. | 105 L. 8711.66| 0.20k 60 0.0359| 855(0.0269| 2.31 stable laminar
k. P1.| 111 6.13(2.09 | 0.151 -25 0.0138[1536(0.0144| 2.05 | unstable turbulent
1 I Pl.| 102.5 |5.691.94 | 0.20k €0 0.0307| 975{0.0324%} 1.88 stable laminar
k. PL.{ 1ok 6.342.16 | 0.155 -32 0.0169{1450{0.0218{ 1.74 | unstable turbulent
11 [¥- PL| 91 6.38/2.18 | 0.204 60 0.0274| 973|0.046T7] 1.32 steble laminar
k. PL.| 98.5 l6.04/2.06] 0.154 -30 0.0165|1317]0.0217| 1.6+ | unstable |partly laminar, partly turbulent
10 J¥ PL. 81 7.78(2.65| 0.204 €0 0.0225|1052{0.0721| 0.86 gtable leminar
k. P1.| 87.5 [5.75/1.96| 0.154 —30 0.0174 1108_ 0.0261} 1.36 stable laminer

w. P1l. = hot plate k. P1, = cold plate

T
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for this curve indicates the attlitudes where the amplification of the
disturbance motion is exactly equal to zero. For an actual appearance

_ of the turbulence, the small disturbances must, however, be considerably
‘amplified; and that i1s the case only when the Reynolds nunber i1s gomewhat

greater (compare reference 22). The agreement is therefore compléete.

The value acrit = 0,250 obtained by Taylor and Goldstein is far

from the € wvalues denoting the boundary between laminar and turbulent
flow according to Richardson's measurements. It is true that Taylor's
and Goldstein's stability investigations had been based upon different
velocity profiles than realized here in experiment. The presented
theory, on the other hand, whose assumptions are rather closely
satisfied by the measurements, indicates a very satisfactory agreement
with the experiment, according to figure 15.

Translated by J. Vanler
National Advisory Committee
for Aeronautics
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Figure 1.- The investigated laminar flow with stratification of densities.
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Figure 3.- The indifference curves for the plate flow with stratification of-
densities. The reciprocal of the disturbance wave length o8* as a

5%
function of the Reynolds number Hne;— and the stratification measure K,
for L =0.
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Figure 4.- The indifference curve for the plate flow with stratification of
densities. The reciprocal of the disturbance wave length ab* as a

*
function of the Reynolds number Unzs
for L = —1—.

10

and the stratification measure K,
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Figure 5.- The indifference curve for the plate flow with stratification of
densities. The reciprocal of the disturbance wave length ob* asa

U, 5*
function of the Reynolds number —IE— and the stratification measure K,
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Figure 6.- The indifference curve for the plate flow with stratification of
densities, The reciprocal of the disturbance wave length op* as a

B*
function of the Reynolds number Un\l) and the stratification measure K,
for L = --l-.
10




NACA TM 1262
2500
o T
v K “ N
— T = - i - I
2000 I | :
olnt i 1/
_QJ?.58€ 4
-] =/4.65 ’P ‘
0 I .
1500 ’,1'7/ T
/||
I
1000 7 I }
1
575 /_/r | I
500 % ]
== 1
- |
d ]
o 24|
L YUs i

=-0.03 -002 -00/ a.0 av2 003 Q04 005

Figure 7.- The critical Reynolds number of the plate flow as a function of

2
the Richardson number and the Froude number R, = R, (@, U{f} ) .
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Figure 9.- A velocity and temperature distribution in the Gottingen hot-cold
air tunnel (according to Reichardt).
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Figures 10 through 14.- Comparison with test data (velocity profiles). The
dashed curves were measured; the solid curves served as basis for the
stability calculations. Agreement between measurement and calculation
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